Source code for pysph.sph.integrator

"""Basic code for the templated integrators.

Currently we only support two-step integrators.

These classes are used to generate the code for the actual integrators
from the `sph_eval` module.
"""

from numpy import sqrt
import numpy as np

from compyle.profile import profile_ctx, profile
# Local imports.
from .integrator_step import IntegratorStep


###############################################################################
# `Integrator` class
###############################################################################
[docs]class Integrator(object): r"""Generic class for multi-step integrators in PySPH for a system of ODES of the form :math:`\frac{dy}{dt} = F(y)`. """ def __init__(self, **kw): """Pass fluid names and suitable `IntegratorStep` instances. For example:: >>> integrator = Integrator(fluid=WCSPHStep(), solid=WCSPHStep()) where "fluid" and "solid" are the names of the particle arrays. """ for array_name, integrator_step in kw.items(): if not isinstance(integrator_step, IntegratorStep): msg = ('Stepper %s must be an instance of ' 'IntegratorStep' % (integrator_step)) raise ValueError(msg) self.steppers = kw self.parallel_manager = None self.nnps = None self.acceleration_evals = None # This is set later when the underlying compiled integrator is created # by the SPHCompiler. self.c_integrator = None self._has_dt_adapt = None self.fixed_h = False def __repr__(self): name = self.__class__.__name__ s = self.steppers args = ', '.join(['%s=%s' % (k, s[k]) for k in s]) return '%s(%s)' % (name, args) def _my_max(self, x): if len(x) > 0: return np.max(x) else: return -1.0 def _get_dt_adapt_factors(self): a_eval = self.acceleration_evals[0] factors = [-1.0, -1.0, -1.0] for pa in a_eval.particle_arrays: prop_names = [] for i, name in enumerate(('dt_cfl', 'dt_force', 'dt_visc')): if name in pa.properties: if pa.gpu: prop_names.append(name) else: max_val = self._my_max(pa.get(name)) factors[i] = max(factors[i], max_val) if pa.gpu: pa.gpu.update_minmax_cl(prop_names, only_max=True) for i, name in enumerate(('dt_cfl', 'dt_force', 'dt_visc')): if name in pa.properties: max_val = getattr(pa.gpu, name).maximum factors[i] = max(factors[i], max_val) cfl_f, force_f, visc_f = factors return cfl_f, force_f, visc_f def _get_explicit_dt_adapt(self): """Checks if the user is defining a 'dt_adapt' property where the timestep is directly specified. This returns None if no such parameter is found, else it returns the allowed timestep. """ a_eval = self.acceleration_evals[0] if self._has_dt_adapt is None: self._has_dt_adapt = any( 'dt_adapt' in pa.properties for pa in a_eval.particle_arrays ) if self._has_dt_adapt: dt_min = np.inf for pa in a_eval.particle_arrays: if 'dt_adapt' in pa.properties: if pa.gpu is not None: if pa.gpu.get_number_of_particles() > 0: from compyle.array import minimum min_val = minimum(pa.gpu.dt_adapt) else: min_val = np.inf else: if pa.get_number_of_particles() > 0: min_val = np.min(pa.dt_adapt) else: min_val = np.inf dt_min = min(dt_min, min_val) if dt_min > 0.0: return dt_min else: return None else: return None ########################################################################## # Public interface. ##########################################################################
[docs] def set_acceleration_evals(self, a_evals): '''Set the acceleration evaluators. This must be done before the integrator is used. If you are using the SPHCompiler, it automatically calls this method. ''' if isinstance(a_evals, (list, tuple)): self.acceleration_evals = a_evals else: self.acceleration_evals = [a_evals]
[docs] def set_fixed_h(self, fixed_h): # compute h_minimum once for constant smoothing lengths if fixed_h: self.compute_h_minimum() self.fixed_h = fixed_h
[docs] def set_nnps(self, nnps): self.nnps = nnps self.c_integrator.set_nnps(nnps)
[docs] def compute_h_minimum(self): a_eval = self.acceleration_evals[0] hmin = 1.0 for pa in a_eval.particle_arrays: if pa.gpu: h = pa.gpu.get_device_array('h') else: h = pa.get_carray('h') if h.minimum < hmin: hmin = h.minimum self.h_minimum = hmin
[docs] def compute_time_step(self, dt, cfl): """If there are any adaptive timestep constraints, the appropriate timestep is returned, else None is returned. """ dt_adapt = self._get_explicit_dt_adapt() if dt_adapt is not None: return dt_adapt dt_cfl_fac, dt_force_fac, dt_visc_fac = self._get_dt_adapt_factors() # iterate over particles and find hmin if using variable h if not self.fixed_h: self.compute_h_minimum() hmin = self.h_minimum # default time steps set to some large value dt_cfl = dt_force = dt_viscous = np.inf # stable time step based on courant condition if dt_cfl_fac > 0: dt_cfl = hmin/dt_cfl_fac # stable time step based on force criterion if dt_force_fac > 0: dt_force = sqrt(hmin/sqrt(dt_force_fac)) # stable time step based on viscous condition if dt_visc_fac > 0: dt_viscous = hmin/dt_visc_fac # minimum of all three dt_min = min(dt_cfl, dt_force, dt_viscous) # return the computed time steps. If dt factors aren't # defined, the default dt is returned if dt_min <= 0.0 or np.isinf(dt_min): return None else: return cfl*dt_min
[docs] def one_timestep(self, t, dt): """User written function that actually does one timestep. This function is used in the high-performance Cython implementation. The assumptions one may make are the following: - t and dt are passed. - the following methods are available: - self.initialize() - self.stage1(), self.stage2() etc. depending on the number of stages available. - self.compute_accelerations(index=0, update_nnps=True) - self.do_post_stage(stage_dt, stage_count_from_1) - self.update_domain() Please see any of the concrete implementations of the Integrator class to study. By default the Integrator implements a predict-evaluate-correct method, the same as PECIntegrator. """ self.initialize() # Predict self.stage1() self.update_domain() # Call any post-stage functions. self.do_post_stage(0.5*dt, 1) self.compute_accelerations() # Correct self.stage2() self.update_domain() # Call any post-stage functions. self.do_post_stage(dt, 2)
[docs] def set_compiled_object(self, c_integrator): """Set the high-performance compiled object to call internally. """ self.c_integrator = c_integrator
[docs] def set_parallel_manager(self, pm): self.parallel_manager = pm self.c_integrator.set_parallel_manager(pm)
[docs] def set_post_stage_callback(self, callback): """This callback is called when the particles are moved, i.e one stage of the integration is done. This callback is passed the current time value, the timestep and the stage. The current time value is t + stage_dt, for example this would be 0.5*dt for a two stage predictor corrector integrator. """ self.c_integrator.set_post_stage_callback(callback)
[docs] def step(self, time, dt): """This function is called by the solver. To implement the integration step please override the ``one_timestep`` method. """ self.c_integrator.step(time, dt)
[docs] def compute_accelerations(self, index=0, update_nnps=True): if update_nnps: # update NNPS since particles have moved if self.parallel_manager: self.parallel_manager.update() with profile_ctx('nnps.update'): self.nnps.update() # Evaluate c_integrator = self.c_integrator a_eval = self.acceleration_evals[index] with profile_ctx('acceleration_eval_%d' % index): a_eval.compute(c_integrator.t, c_integrator.dt)
@profile def initial_acceleration(self, t, dt): """Compute the initial accelerations if needed before the iterations start. The default implementation only does this for the first acceleration evaluator. So if you have multiple evaluators, you must override this method in a subclass. """ self.acceleration_evals[0].compute(t, dt) @profile def update_domain(self): """Update the domain of the simulation. This is to be called when particles move so the ghost particles (periodicity, mirror boundary conditions) can be reset. Further, this also recalculates the appropriate cell size based on the particle kernel radius, `h`. This should be called explicitly when desired but usually this is done when the particles are moved or the `h` is changed. The integrator should explicitly call this when needed in the `one_timestep` method. """ self.nnps.update_domain()
############################################################################### # `EulerIntegrator` class ###############################################################################
[docs]class EulerIntegrator(Integrator):
[docs] def one_timestep(self, t, dt): self.compute_accelerations() self.stage1() self.update_domain() self.do_post_stage(dt, 1)
############################################################################### # `PECIntegrator` class ###############################################################################
[docs]class PECIntegrator(Integrator): r""" In the Predict-Evaluate-Correct (PEC) mode, the system is advanced using: .. math:: y^{n+\frac{1}{2}} = y^n + \frac{\Delta t}{2}F(y^{n-\frac{1}{2}}) --> Predict F(y^{n+\frac{1}{2}}) --> Evaluate y^{n + 1} = y^n + \Delta t F(y^{n+\frac{1}{2}}) """
[docs] def one_timestep(self, t, dt): self.initialize() # Predict self.stage1() self.update_domain() # Call any post-stage functions. self.do_post_stage(0.5*dt, 1) self.compute_accelerations() # Correct self.stage2() self.update_domain() # Call any post-stage functions. self.do_post_stage(dt, 2)
############################################################################### # `EPECIntegrator` class ###############################################################################
[docs]class EPECIntegrator(Integrator): r""" Predictor corrector integrators can have two modes of operation. In the Evaluate-Predict-Evaluate-Correct (EPEC) mode, the system is advanced using: .. math:: F(y^n) --> Evaluate y^{n+\frac{1}{2}} = y^n + F(y^n) --> Predict F(y^{n+\frac{1}{2}}) --> Evaluate y^{n+1} = y^n + \Delta t F(y^{n+\frac{1}{2}}) --> Correct Notes: The Evaluate stage of the integrator forces a function evaluation. Therefore, the PEC mode is much faster but relies on old accelertions for the Prediction stage. In the EPEC mode, the final corrector can be modified to: .. math:: y^{n+1} = y^n + \frac{\Delta t}{2}\left( F(y^n) + F(y^{n+\frac{1}{2}}) \right) This would require additional storage for the accelerations. """
[docs] def one_timestep(self, t, dt): self.initialize() self.compute_accelerations() # Predict self.stage1() self.update_domain() # Call any post-stage functions. self.do_post_stage(0.5*dt, 1) self.compute_accelerations() # Correct self.stage2() self.update_domain() # Call any post-stage functions. self.do_post_stage(dt, 2)
############################################################################### # `TVDRK3Integrator` class ###############################################################################
[docs]class TVDRK3Integrator(Integrator): r""" In the TVD-RK3 integrator, the system is advanced using: .. math:: y^{n + \frac{1}{3}} = y^n + \Delta t F( y^n ) y^{n + \frac{2}{3}} = \frac{3}{4}y^n + \frac{1}{4}(y^{n + \frac{1}{3}} + \Delta t F(y^{n + \frac{1}{3}})) y^{n + 1} = \frac{1}{3}y^n + \frac{2}{3}(y^{n + \frac{2}{3}} + \Delta t F(y^{n + \frac{2}{3}})) """
[docs] def one_timestep(self, t, dt): self.initialize() # stage 1 self.compute_accelerations() self.stage1() self.update_domain() self.do_post_stage(1./3*dt, 1) # stage 2 self.compute_accelerations() self.stage2() self.update_domain() self.do_post_stage(2./3*dt, 2) # stage 3 and end self.compute_accelerations() self.stage3() self.update_domain() self.do_post_stage(dt, 3)
###############################################################################
[docs]class LeapFrogIntegrator(PECIntegrator): r"""A leap-frog integrator. """
[docs] def one_timestep(self, t, dt): self.stage1() self.update_domain() self.do_post_stage(0.5*dt, 1) self.compute_accelerations() self.stage2() self.update_domain() self.do_post_stage(dt, 2)
###############################################################################
[docs]class PEFRLIntegrator(Integrator): r"""A Position-Extended Forest-Ruth-Like integrator [Omeylan2002]_ References ---------- .. [Omeylan2002] I.M. Omelyan, I.M. Mryglod and R. Folk, "Optimized Forest-Ruth- and Suzuki-like algorithms for integration of motion in many-body systems", Computer Physics Communications 146, 188 (2002) http://arxiv.org/abs/cond-mat/0110585 """
[docs] def one_timestep(self, t, dt): self.stage1() self.update_domain() self.do_post_stage(0.1786178958448091*dt, 1) self.compute_accelerations() self.stage2() self.update_domain() self.do_post_stage(0.1123533131749906*dt, 2) self.compute_accelerations() self.stage3() self.update_domain() self.do_post_stage(0.8876466868250094*dt, 3) self.compute_accelerations() self.stage4() self.update_domain() self.do_post_stage(0.8213821041551909*dt, 4) self.compute_accelerations() self.stage5() self.update_domain() self.do_post_stage(dt, 5)